Sheena E Radford, OBE BSc PhD FMedSci FRS

PhD, University of Cambridge, 1987

BSc (Biochemistry), University of Birmingham, 1984

2021- Royal Society Research Professor
2014- Astbury Professor of Biophysics, University of Leeds
2012-2021 Director, Astbury Centre for Structural Molecular Biology, University of Leeds
2009-2012 Deputy Director, Astbury Centre for Structural Molecular Biology, University of Leeds
2004-2008 Co-founder and Co-director University Interdisciplinary Institute in Molecular Biophysics
2000- Professor of Structural Molecular Biology, University of Leeds
1998-2000 Reader in Structural Molecular Biology, University of Leeds
1996-2001 Supernumerary Research Fellow, Linacre College, Oxford
1995-1998 Lecturer, School of Biochemistry and Molecular Biology, University of Leeds
1992-1995 Senior Research Fellow, Linacre College, Oxford
1991-1995 Royal Society University Research Fellow, Oxford Centre for Molecular Sciences
1990-1992 EPA-Cephalosporin Junior Research Fellow, Linacre College, Oxford
1988-1991 Post-doctoral research, Inorganic Chemistry Laboratory, University of Oxford
1988 Post-doctoral research, Dyson Perrins Lab, University of Oxford

2024 International Member of the National Academy of Sciences, USA, May 2024.
2024 Awarded the Biochemical Society Centenary Award for 2025 to recognise a biochemist of distinction.
2022 Doctor Honoris causa Honorary Degree from the University of Liege.
2021 Royal Society 5-year Research Professorship.
2020 Membership of the Academia Europaea (MAE);
2020 Officer of the Order of the British Empire (OBE) for services to Molecular Biology;
2019 Election to Honorary Fellowship of St John’s College, Cambridge;
2017 Elected 2018 Fellow of the Biophysical Society for "Leadership in protein biophysics";
2015 The Rita and John Cornforth Award of the Royal Society of Chemistry, jointly with Professor Alison Ashcroft (University of Leeds);
2014 Honorary membership of the British Biophysical Society;
2014 Elected Fellow of the Royal Society (FRS);
2013 The Protein Society – Carl Branden award;
2010 Fellow of the Academy of Medical Sciences;
2009 Hites Award, American Society for Mass Spectrometry (joint with Professor Alison Ashcroft);
2007 Fellow of the European Molecular Biology Organisation (EMBO);
2005 Royal Society of Chemistry Astra-Zeneca prize: Proteins and Peptides;
2003 Fellow of the Royal Society of Chemistry;
2001-2006 BBSRC Professorial Fellow;
1996 The Biochemical Society - Colworth Medal;
1984 The University Science Faculty prize - University of Birmingham;
1983 Departmental prize – University of Birmingham;
1982 Departmental prize – University of Birmingham;

Link to all publications ->

Career Top 10 Papers: Amyloid field

  1. The folding of lysozyme involves partially structured intermediates and multiple pathways
    Radford, S.E., Dobson, C.M & Evans, P.A. (1992) Nature, 358, 302-307
  2. Instability, unfolding and aggregation of human lysozyme variants underlying amyloid fibrillogenesis.
    Booth, D.R., Sunde, M., Bellotti, V., Robinson, C.V., Hutchinson, W.L., Fraser, P.E., Hawkins, P.N., Dobson, C.M., Radford, S.E., Blake, C.C.F. & Pepys, M.B. (1997) Nature, 385, 787-793
  3. Amyloid formation under physiological conditions proceeds via a native-like folding intermediate.
    Jahn, T.R., Parker, M.J., Homans, S.W. & Radford, S.E. (2006) Nat. Struct. Molec. Biol., 13, 195-201
  4. Visualization of transient protein-protein interactions that promote or inhibit amyloid assembly.
    Karamanos, T.K., Kalverda, A.P., Thompson, G.S & Radford S.E. (2014) Mol. Cell, 55, 214-226
  5. Fibril structures of diabetes-related amylin variants reveal a basis for surface templated assembly.
    Gallardo, R., Iadanza, M.G., Xu, Y., Heath, G.R., Foster, R., Radford, S.E. & Ranson, N.A. (2020) Nature Struct. Mol. Biol., 27, 1048-1056
  6. A short motif in the N-terminal region of α-synuclein is critical for both aggregation and function.
    Doherty, C.P.A., Ulamec, S.M., Maya-Martinez, R., Good, S.C., Makepeace, J., Khan, G.N., van Oosten-Hawle, P., Radford, S.E. & Brockwell, D.J. (2020) Nat. Struct. Mol. Biol., 27, 249-259
  7. Tuning the rate of aggregation of hIAPP into amyloid using small-molecule modulators of assembly.
    Xu, Y., Maya-Martinez, R., Guthertz, N., Breeze, A.L., Sobott, F., Foster, R. & Radford S.E. (2022) Nat. Comms., 13, 1040
  8. The in-tissue molecular architecture of amyloid pathology in the mammalian brain
    Leistner, C., Wilkinson, M., Burgess, A., Goodbody, S., Yong Xu, Y., Deuchars, S., Radford, S.E., Ranson, N.A. & Frank, R.A.W. (2023) Nat. Comms., 14, 2833
  9. Structural evolution of fibril polymorphs during amyloid assembly
    Wilkinson, M., Xu, Y., Thacker, D., Taylor, A.L.P., Fisher, D.G., Gallardo, R.U., Radford, S.E & Ranson, N.A. (2023) Cell, 186, 5791-5811
  10. In situ cryo-electron tomography of β-amyloid and tau in post-mortem Alzheimer’s disease brain tissue
    Gilbert, M.A., Fatima, N., Jenkins, J., O’Sullivan, T.J., Schertel, A., Halfon, Y., Wilkinson, M., Morrema, T.H.J., Geibel, M., Read, R.J., Ranson, N.A., Radford, S.E., Hoozemans, J.J.M. & Frank, R.A. (2024) Nature, 631, 913-919
Career Top 10 Papers: OMP field
  1. The transition state for the folding of an outer membrane protein.
    Huysmans, G.H.M., Baldwin, S.A., Brockwell, D.J. & Radford, S.E. (2010) Proc. Natl. Acad. Sci USA, 107, 4099-4104
  2. Skp is a multivalent chaperone of outer membrane proteins
    Schiffrin, R., Calabrese, A.N., Devine, P.W.A., Harris, S.A., Ashcroft, A.E., Brockwell, D.J. & Radford, S.E (2016) Nature Struct. Mol. Biol, 23, 786-793
  3. Lateral opening in the intact β-barrel assembly machinery captured by cryo-EM.
    Iadanza, M.G., Higgins, A.J., Schiffrin, R., Calabrese, A.N., Brockwell, D.J., Ashcroft, A.E., Radford, S.E. & Ranson, N.A. (2016) Nature Comms, 7, 12865
  4. Inter-domain dynamics in the chaperone SurA permit multi-site binding to its outer membrane protein clients.
    Calabrese, A.N., Schiffrin, B., Watson, M., Karamanos, T.K., Walko, M., Humes, J.R., Horne, J.E., White, P., Wilson, A.J., Kalli, A.C., Tuma, R., Ashcroft, A.E., Brockwell, D.J & Radford, S.E. (2020) Nat. Comms, 11, 2155
  5. The role of membrane destabilisation and protein dynamics in BAM catalysed OMP folding.
    White, P., Haysom, S.F., Iadanza, M.G., Higgins, A.J., Machin, J.M., Horne, J.E., Schiffrin, B., Carpenter-Platt, C., Whitehouse, J.M., Storek, K.M., Rutherford, S.T., Brockwell, D.J., Ranson, N.A. & Radford, S.E. (2021) Nat. Comms., 12,, 4174
  6. De novo design of transmembrane beta barrels.
    Vorobieva, A.A., White, P., Binyong Liang, B., Horne, J.E., Bera., A.K., Chow, C.M., Gerben, S., Marx, S., Kang, A., Stiving, A.Q., Harvey, S.R., Marx, D., Khan, G.N., Fleming, K., Wysocki, V.H., Brockwell, D.J., Tamm, L., Radford, S.E. & Baker, D. (2021) Science, 371, eabc8182
  7. Protein-lipid charge interactions control folding of OMPs into symmetric and asymmetric membrane bilayers.
    Machin, J., Kali, A.C., Ranson, N.A. & Radford, S.E. (2023) Nature Chem., 15, 1754-1764
  8. Outer membrane protein assembly mediated by BAM-SurA complexes.
    Fenn, K.L., Horne, J.E., Crossley, J.A., Böhringer, N., Horne, R.A., Schäberle, T.F., Calabrese, A.N., Radford, S.E. & Ranson, N.A. (2024) Nature Comms, 15, 7612
  9. Dual client binding sites in the ATP-independent chaperone SurA.
    Schiffrin, B., Crossley, J.A., Walko, M., Machin, J.M., Khan, N.G., Manfield, I.W., Wilson, A.J., Brockwell, D.J., Fessl, T., Calabrese, A.N., Radford, S.E. & Zhuravleva, A. (2024) Nature Comms., 15, 8071
  10. Sculpting conducting nanopore size and shape through de novo protein design.
    Berhanu, S., Majumder, S., Müntener, T., Whitehouse, J., Berner, C., Bera, A.K., Kang, A., Liang, B., Khan, G.N., Sankaran, B., Tamm, .K., Brockwell, D.J., Hiller, H., Radford, S.E., Baker, D. & Vorobieva, A.A. (2024) Science 385, 282-288
Career Top Papers: Biologics field
  1. Pulling geometry defines the mechanical resistance of a β-sheet protein.
    Brockwell, D.J., Paci, E., Zinober, R.C., Beddard, G.S., Olmsted, P.D., Smith, D.A., Perham, R.N. & Radford, S.E. (2003) Nature Struct. Biol, 10, 731-737
  2. An in vivo platform for identifying inhibitors of protein aggregation
    Saunders, J.C., Young, L.M., Mahood, R.A., Revill, C.H., Foster, R.J., Jackson, M.P., Smith, D.A.M., Ashcroft, A.E., Brockwell, D.J. & Radford, S.E. (2016) Nature Chem. Biol, 12, 94-101
  3. Inducing protein aggregation by extensional flow.
    Dobson, J., Kumar, A., Willis, L.F., Tuma, R., Higazi, D.R., Turner, R., Lowe, D.C., Ashcroft, A.E., Radford, S.E., Kapur, N. & Brockwell, D.J. (2017) Proc. Nat Acad. Sci. USA, 114, 4673-4678
  4. Using extensional flow to reveal diverse aggregation landscapes for three IgG1 molecules.
    Willis, L.F., Kumar, A., Dobson, J., Bond, N., Lowe, D., Turner, R., Radford, S.E., Kapur, N. & Brockwell, D.J. (2018) Biotech & Bioeng, 115, 1216-1225
  5. An in vivo platform to select and evolve aggregation-resistant protein therapeutics.
    Ebo, J.S., Saunders, J.C., Devine, P.W.A., Gordon, A.M., Warwick, A.S., Schiffrin, B., Chin, S., England, E., Button, J.D., Lloyd, C., Bond, N., Ashcroft, A.E., Radford, S.E., Lowe, D.C. & Brockwell, D.J. (2020) Nat. Comms, 11, 1816
  6. Exploring a role of flow-induced aggregation assays in platform formulation optimisation for antibody-based proteins.
    Willis, L.F., Toprani, V., Wijetunge, S., Sievers, A., Lin, L., Williams, J., Crowley, T.J., Radford, S.E., Kapur, N & Brockwell, D.J. (2024) J. Pharm Sci., 113, 625-636

“ When anyone contradicted Einstein he thought it over, and if he was found wrong he was delighted, because he felt that he had escaped from an error, and that now he knew better than before. ”