Sheena E Radford, OBE BSc PhD FMedSci FRS

PhD, University of Cambridge, 1987

BSc (Biochemistry), University of Birmingham, 1984

2014- Astbury Professor of Biophysics, University of Leeds
2012- Director, Astbury Centre for Structural Molecular Biology, University of Leeds
2009-2011 Deputy Director, Astbury Centre for Structural Molecular Biology, University of Leeds
2004-2008 Co-founder and Co-director University Interdisciplinary Institute in Molecular Biophysics
2000- Professor of Structural Molecular Biology, University of Leeds
1998-2000 Reader in Structural Molecular Biology, University of Leeds
1996 Supernumerary Research Fellow, Linacre College, Oxford
1995-1998 Lecturer, School of Biochemistry and Molecular Biology, University of Leeds
1992-1995 Senior Research Fellow, Linacre College, Oxford
1991-1995 Royal Society University Research Fellow, Oxford Centre for Molecular Sciences
1990-1992 EPA-Cephalosporin Junior Research Fellow, Linacre College, Oxford
1988-1991 Post-doctoral research, Inorganic Chemistry Laboratory, University of Oxford
1988 Post-doctoral research, Dyson Perrins Lab, University of Oxford

1982 Departmental prize – University of Birmingham; 1983 Departmental prize – University of Birmingham; 1984 The University Science Faculty prize - University of Birmingham; 1996 The Biochemical Society - Colworth Medal; 2001-2006 BBSRC Professorial Fellow; 2003 Fellow of the Royal Society of Chemistry; 2005 Royal Society of Chemistry Astra-Zeneca prize: Proteins and Peptides; 2007 Fellow of the European Molecular Biology Organisation (EMBO); 2009 Hites Award, American Society for Mass Spectrometry (joint with Professor Alison Ashcroft); 2010 Fellow of the Academy of Medical Sciences; 2013 The Protein Society – Carl Branden award; 2014 Elected Fellow of the Royal Society (FRS); 2014 Honorary membership of the British Biophysical Society; 2015 The Rita and John Cornforth Award of the Royal Society of Chemistry, jointly with Professor Alison Ashcroft (University of Leeds); 2017 Elected 2018 Fellow of the Biophysical Society for “Leadership in protein biophysics”; 2019 Election to Honorary Fellowship of St John’s College, Cambridge; 2020 Officer of the Order of the British Empire (OBE)

Link to all publications ->

  1. The folding of lysozyme involves partially structured intermediates and multiple pathways. Radford, S.E., Dobson, C.M. & Evans, P.A. (1992) Nature 358, 302-307
  2. Detection of transient protein folding populations by mass spectrometry. Miranker, A., Robinson, C.V., Radford, S.E., Aplin, R.T. & Dobson, C.M. (1993) Science 262, 896-899
  3. Instability, unfolding and aggregation of human lysozyme variants underlying amyloid fibrillogenesis. Booth, D.R., Sunde, M., Bellotti, V., Robinson, C.V., Hutchinson, W.L., Fraser, P.E., Hawkins, P.N., Dobson, C.M., Radford, S.E., Blake, C.C.F. & Pepys, M.B. (1997) Nature, 385, 787-793
  4. Responsive gels formed by the spontaneous self-assembly of peptides into polymeric β-sheet tapes. Aggeli, A., Bell, M., Boden, N., Keen, J., Knowles, P.F., McLeish, T.C.B., Pitkeathly, M. & Radford, S.E. (1997) Nature, 386, 259-262
  5. Rapid folding with and without populated intermediates in the homologous four helix proteins Im7 and Im9. Ferguson, N., Capaldi, A.P., James. R., Kleanthous, C. & Radford, S.E. (1999) J. Mol. Biol. 286, 1597-1608
  6. Partially unfolded states of β2-microglobulin and amyloidosis in vitro. McParland, V.J., Kad, N.M., Kalverda, A.P., Brown, A., Kerwin-Jones, P., Hunter, M.G., Sunde, M. & Radford, S.E. (2000) Biochemistry, 39, 8735-8746
  7. Ultra-rapid mixing experiments reveal that Im7 folds via an on-pathway intermediate. Capaldi, A.P., Shastry, M.C.R., Roder, H. & Radford, S.E. (2001) Nature Struct. Biol., 8, 68-72.
  8. Im7 folding mechanism: misfolding on the path to the native state. Capaldi, A.P., Kleanthous, C. & Radford, S.E. (2002) Nature Struct. Biol., 9, 209-216.
  9. Structural properties of an amyloid precursor of β2-microglobulin. McParland, V.J., Kalverda, A.P., Homans, S.W & Radford, S.E. Nature Struct. Biol. (2002), 9, 326-331
  10. Pulling geometry defines the mechanical resistance of a β-sheet protein. Brockwell, D.J., Paci, E., Zinober, R.C., Beddard, G.S., Olmsted, P.D., Smith, D.A., Perham, R.N. & Radford, S.E. (2003) Nature Struct. Biol., 10, 731-737
  11. Mechanically unfolding the small, topologically simple protein L. Brockwell, D.J., Beddard, G.S., Paci, E., West, D.K., Olmsted, P.D., Smith, D.A.M. & Radford, S.E. (2005) Biophys. J., 89, 506-519
  12. Competing pathways determine fibril morphology in the self-assembly of β2-microglobulin into amyloid. Gosal, W.S., Morten, I.J., Hewitt, E.W., Smith, D.A., Thomson, N.H. & Radford, S.E. (2005) J. Mol. Biol. 351, 850-864
  13. Amyloid formation under physiological conditions proceeds via a native-like folding intermediate. Jahn, T.R., Parker, M.J., Homans, S.W. & Radford, S.E. (2006) Nature Struct. and Molec. Biol. 13, 195-201
  14. Systematic analysis of nucleation-dependent polymerisation reveals new insights into the mechanism of amyloid self-assembly. Xue, W.F., Homans, S.W. & Radford, S.E. (2008) Proc. Natl. Acad. Sci. USA 105, 8926-8931
  15. The mechanism of folding of Im7 reveals competition between functional and kinetic evolutionary constraints. Friel. C.T., Smith, D.A., Vendruscolo, M., Gsponer, J. & Radford, S.E. (2009) Nature Struct. and Molec. Biol. 16, 318-324
  16. Fibril fragmentation enhances amyloid cytotoxicity. Xue, W.F., Hellewell, A.L., Gosal, W.S., Homans, S.W., Hewitt, E.W. & Radford, S.E. (2009) J. Biol. Chem. 284, 34272-34282
  17. Elongated oligomers in β2-microglobulin amyloid assembly revealed by ion mobility spectrometry mass spectrometry. Smith, D.P., Radford, S.E. & Ashcroft, A.E. (2010) Proc. Natl. Acad. Sci. USA, 107, 6794-6798
  18. The transition state for the folding of an outer membrane protein. Huysmans, G., Baldwin, S.A., Brockwell, D.J. & Radford, S.E. (2010) Proc. Natl. Acad. Sci. USA, 107, 4099-4104
  19. Conformational conversion during amyloid formation at atomic resolution. Eichner, T., Kalverda, A.P., Thompson, G.S., Homans, S.W. & Radford, S.E. (2011) Molecular Cell 41, 161-172
  20. Ligand binding to distinct states diverts aggregation of an amyloid-forming protein. Woods, L.A., Platt, G.W., Hellewell, A.L., Hewitt, E.W., Homans, S.W., Ashcroft, A.E., Radford, S.E. (2011) Nature Chem. Biol. 7, 730-739
  21. Direct three-dimensional visualisation of membrane disruption by amyloid fibrils Milanesi, L., Sheynis, T., Xue, W.F., Orlova, E.V., Hellewell, A.L., Jelinek, R., Hewitt, E.W., Radford, S.E. & Saibil, H.R. (2012) Proc. Natl. Acad. Sci. USA, 109, 50, 20455-20460
  22. Site-specific identification of the A fibril-glycosaminoglycan interaction site using solid state NMR Madine, J., Pandya, M.J., Hicks, M.R., Rodger, A., Yates, E.A., Radford, S.E. & Middleton, D.A. (2012) Angewandte Chemie, 51, 13140-13143
  23. Visualization of transient protein-protein interactions that promote or inhibit amyloid assembly Karamanos, T.K., Kalverda, A.P., Thompson, G.S & Radford S.E. (2014) Molecular Cell, 55, 214-226
  24. Energy landscapes of functional proteins are inherently risky Gershenson, A., Gierasch, L.M.*, Pastore, A. & Radford, S.E. (2014) Nature Chem. Biol., 10, 884-891
  25. How TriC folds tricky proteins Zhuravleva, A. * & Radford, S.E. * (2014) Cell 159, 1251-1252
  26. Screening and classifying small molecule inhibitors of amyloid formation using ion mobility spectrometry-mass spectrometry Young, L.M., Saunders, J.C., Mahood, R.A., Revill, C.H., Foster R.J., Tu, L.-H., Raleigh, D.P., Radford, S.E. & Ashcroft, A.E. (2015) Nature Chemistry, 7, 1, 73-81
  27. Amyloid fibres: inert end- stage aggregates or key players in disease? Tipping, K.W., Van Oosten-Hawle, P., Hewitt, E.W. & Radford, S.E. (2015) Trends in Biochem. Sci., 40, 719-727
  28. Lateral opening in the intact β-barrel assembly machinery captured by cryo-EM Iadanza, M.G., Higgins, A.J., Schiffrin, R., Calabrese, A.N., Brockwell, D.J., Ashcroft, A.E., Radford, S.E. & Ranson, N.A. (2016) Nature Comms., 7, 12865
  29. pH-induced molecular shedding drives the formation of amyloid fibril-derived oligomers Tipping, K.W., Karamanos, T.K., Jakhria, T., Iadanza, M.G., Goodchild, S.C., Tuma, R., Ranson, N.A., Hewitt, E.W. & Radford, S.E. (2015) PNAS, 112, 5691-5696
  30. Skp is a multivalent chaperone of outer membrane proteins Schiffrin, R., Calabrese, A.N., Devine, P.W.A., Harris, S.A., Ashcroft, A.E., Brockwell, D.J. & Radford, S.E. (2016) Nat. Struct. Mol. Biol. 23, 786-793
  31. Substrate protein folds while it is bound to the ATP-independent chaperone Spy Stull, F., Koldewey, P., Humes, J.R., Radford, S.E. & Bardwell, J.C.A. (2016) Nat. Struct. Mol. Biol. 1, 53-59
  32. An in vivo platform for identifying inhibitors of protein aggregation Saunders, J.C., Young, L.M., Mahood, R.A., Revill, C.H., Foster, R.J., Jackson, M.P., Smith, D.A.M., Ashcroft, A.E., Brockwell, D.J. & Radford, S.E. (2016) Nature Chem. Biol., 12, 94-101
  33. A new era for understanding amyloid structures and disease Iadanza, M.G., Jackson, M.P., Hewitt, E.W., Ranson, N.A. & Radford, S.E. (2018) Nature Rev. Mol. Cell. Biol., 19, 755–773
  34. The structure of a β2-microglobulin fibril suggests a molecular basis for its amyloid polymorphism Iadanza. M.G., Silvers, R., Boardman, J., Smith, H.I., Karamanos, T.K., Debelouchina, G.T., Su, Y., Griffin, R.G., Ranson, N.A., & Radford, S.E. (2018) Nature Comms., 9, 4517 – 4527
  35. Structural mapping of oligomeric intermediates in an amyloid assembly pathway Karamanos, T.K., Jackson, M.P., Calabrese, A.N., Goodchild, S.C., Cawood, E.E., Thompson, G.S., Kalverda, A.P., Hewitt, E.W., & Radford, S.E. (2019) eLife 8, e46574

“ One concrete example is better than a mountain of prose. ”